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SUMMARY

The five benchmark programs discussed in TM 88956, February 1987, were

since then run on the CRAY X-MP]24 under different operating systems and

compilers. Performance data is reported for runs under early versions of C0S

and CFT up through runs under current versions of UNICOS and CFT77. The most

recent data includes a system configuration for a X-MP hardware upgrade.

Performance figures for the Y-MP are also shown for comparison. Differences

in the figures are analyzed and discussed.

INTRODUCTION

One of the objectives for collecting and comparing the five benchmarks

reported in TM 88956 was to run them whenever changes were made to the

operating system or hardware to observe the effects on the performance data.

The following data was collected at various stages of the CRAY configuration.

The stages include system configurations which evolved from initial versions

of COS and CFT to present versions of UNICOS and CFT77. The results of the

runs of the benchmarks with selected upgrades]changes in the operating system

and compiler are presented in tabular form. The effect of the change from one

operating system or compiler to the next in the performance can be seen by

reading from left to right across the tables.

The tables of results shown next are for system configurations in the

period March 1987 to April 1989. Following the tables, some of the

significant differences are noted and discussed.



Program COSI.14BF4

CFTI.14 I COSI.15BF2CFTI.15BF2

GOSI.15BF2

CFT77(1.3) I COSI.16BF2CFTI.15BF2

UNICOS4.0

CFT77(2.0)

NAS Kernels

MXM

CFFT2D

CHOLSKY

BTRIX

GMTRY

EMIT

VPENTA

TOTAL

136

51

53

80

70

82

41

65

136

49

56

74

73

82

42

65

178

43

42

34

7

81

42

30

137

49

57

74

81

86

42

66

173

55

58

94

74

89

41

71

Sandia SPEED

Ke rne i

TOTAL

i

2

3

4

5

23

ii

39

i0

8

13

23

63

37

i0

8

16

25

75

52

13

8

18

23

63

39

ii

8

16

33

71

51

12

8

19

WHETSTONE

I meg

instr(s) 25 25 32 25 31



THE ARGONNE PROGRAMS

COSI.14BF4

CFTI.14

COSI.15BF2

CFTI.15BF2 I COSI.15BF2CFT77(1.3)

COSI.16BF2

CFTI.15BF2

UNICOS4.0

CFT77(2.0)

LINPACK

ORD i00 22 I 25
36 25 28

Better LU decomposition 0RD i00

UD 1

2

4

8

16

32

42

50

57

57

31

42

50

57

57

53

61

62

62

62

32

43

50

57

58

55

63

65

63

62

Better LU decomposition ORD 300

UD 1

2

4

8

16

68

88

99

115

117

68

88

i00

116

117

10C

120

123

125

125

69

88

i00

116

118

99

119

123

121

120

UD - Unrolled depth



Vector Loops

COSI.14BF4
CFTI.14 COSI.15BF2CFTI.15BF2

COSI.15BF2
CFT77(1.3)

COSI.16BF2

CFTI.15BF2

UNICOS4.0

CFT77(2.0)

Loop

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

n

Y

Y
n

Y

Y

n

n

Y

n

Y

Y

Y

Y

n

n

Y

n

Y

Y
n

Y

Y

Y
n

Y

n

Y

Y

Y

Y

Y

n

Y

NO

DATA

n

Y

Y
n

Y

Y

Y
n

Y

n

Y

Y

Y

Y

Y

n

Y

n

n

Y

Y

Y

Y

Y
n

Y

Y

Y

Y

Y

Y

Y

n

Y

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

Statements in wrong order

Dependency needing a temporary

Loop with unnecessary scalar store

Loop with ambiguous scalar temporary

Loop with subscript that may seem ambiguous

Recursive loop that really isn't

Loop with possible ambiguity because of scalar store

Loop that is partially recursive

Loop with unnecessary array store

Loop with independent conditional

Loop with noninteger addressing

Simple loop with dependent conditional

Complex loop with dependent conditional

Loop with singularity handling

Loop with simple gather/scatter subscripting

Loop with multiple dimension recursion

Loop with multiple dimension ambiguous subscripts



Livermore Loops

Ke  elJCOSI.14 F4ICOSI.15 F2COSI.15BF2ICOSI.I BF2JUNICOS4.0CFTI.14 CFTI. 15BF2 CFT77(1.3) CFTI.15BF2 CFT77(2.0)

6

7

8

9

i0

Ii

12

13

14

15

16

17

18

19

20

21

22

23

24

152

26

135

44

6

13

171

113

144

65

8

71

4

ii

5

3

9

112

7

12

29

66

13

2

152

27

135

39

6

12

171

118

144

69

8

71

4

ii

5

3

ii

111

7

12

28

66

13

2

165

39

155

63

14

15

187

140

161

71

13

82

6

21

6

7

ii

116

15

13

64

67

14

3

152

28

135

40

6

12

171

118

145

69

8

72

5

13

5

4

12

112

8

12

29

66

14

2

163

45

143

62

14

15

187

148

155

41

12

83

6

14

6

7

ii

128

15

13

62

68

13

3

5



DISCUSSION OF SOME SIGNIFICANT CHANGES

(March 1987 to April 1989)

CFTI.14 to CFT 1.15

Note the increase in MFLOPS from ll to 62 in kernel 2 of the Sandia

program This happened basically because a loop in the program which did not

vectorize under CFTI.14 vectorized under CFTI.15. It is the inner loop of the

following multiple loop.

DO 150 I = i, K2

TEMP = FLOAT(I)/DENOM

XL = 0.

DO 140 L = i, NEQN2

XL = XL + i.

YH(L,I) = TEMP + XL / XEQN2
140 CONTINUE

150 CONTINUE

The vector loop program from the Argonne collection shows that loop 7,

DO 70 1 = I, NO7-1

J = I + i

VO7A(1) = VO7A(J)

70 CONTINUE,

which tests the compiler's ability to handle a possible ambiguity because of a

scalar store, did not vectorize under 1.14 but did under 1.15. Thus the

compiler has gotten slightly smarter in handling these types of loops. The

reason for saying slightly is that apparently the compiler can vectorize a

loop similar to the one above so long as a scalar such as XL is incremented in

a regular fashion. We conducted a test on loops of the following form.

DO i0 L = i, N

XL = FCN(XL)

YL = XL

i0 CONTINUE

It will vectorize if FCN(XL) = XL + K where K is a fixed integer. Otherwise,

the compiler refuses to vectorize for reason that a value carried around the

loop is not incremented in a regular fashion.

Most of the rest of the comparison between CFTI.14 and CFT 1.15 shows

both slight increases and slight decreases in MFLOPS.

CFTI.15 to CFT77 (version 1.3)

The third column shows data for CFT77 version 1.3. The numbers in this

column reflect some problems with early versions of CFT77. Notice the NAS

kernels. Although the MFLOP rate for MXM went up, others went down.

Significantly, the rates for BTRIX and GMTRY were reduced by a half and a

factor of i0 respectively. The problem with BTRIX is that there were three



loops which did not vectorize directly in CFT77but did vectorize directly
under CFTI.14 and CFTI.15. One of the loops is the following.

DOi00 J = JS, JE

IF (J.EQ.JS) GO TO 4

DO 3 M = 1,5

DO 3 N = 1,5

DO 3 L = LS, LE

B(M,N,J,L) = B(M,N,J,L) - A(M,I,J,L)*B(I,N,J-1,L)

- A(M,2,J,L)*B(2,N,J-I,L) - A(M,3,J,L)*B(3,N,J-I,L)

- A(M,4,J,L)*B(4,N,J-1,L) A(M,5,J,L)*B(5,N,J-I,L)

3 CONTINUE

4 CONTINUE

i00 CONTINUE

The other two loops are similar. The inner most loop above did vectorize but

only after a significant amount of code was generated to test it first. Thus

the loops referred to above conditionally vectorized. The problem with GMTRY

was a triple nested loop which did not vectorize, i.e.,

DO 8 I = I, MATDIM

RMATRX(I,I) = I. / RMATRX(I,I)

DO 8 J = I+l, MATDIM

RMATRX(J,I) = RMATRX(J,I) * RMATRX(I,I)

DO 8 K = I+l, MATDIM

RMATRX(J,K) = RMATRX(J,K) - RMATRX(J,I) * RMATRX(I,K)

8 CONTINUE

A check was made for dependency and the inner loop on K did not vectorize.

The rates in the rest of the benchmark programs either remained the same

or increased. Like MXM in the NAS kernels, kernel 21 in the Livermore Loops,

which is a matrix-matrix product increased significantly. Kernel 3 had the

biggest increase among the Sandia SPEED kernels. It does a forward and back-

ward substitution excerpt from a linear equation solver with pivoting. A

better handling of recursion is reflected in the roughly doubling of the rates

for kernels 5 and 19 in the Livermore Loops. Also, there is a roughly doubl-

ing of performance in kernels 14 and 16, which do a particle in cell excerpt

and a Monte Carlo search respectively.

COS1.15 (CFTI.15) to COSl.16 (CFTI.15)

There were no significant changes between these two configurations aside

from some very slight increases in the rates.

CFT77 (version 2.0) under UNICOS 4.0

This was our first look at the MFLOP rates under a UNICOS system.

Starting with the NAS kernels, we see that the conditional vectorization and

no vectorization problems encountered with the BTRIX and GMTRY kernels,

respectively, when compiled under CFT77 (version 1.3) have been corrected



under CFT77 (version 2.0). In fact, the rates are even slightly higher than

previous CFT and COS configurations. Except for the MXM kernel, the rates for

the other kernels are the same or slightly higher than CFT77 (1.3) and

previous CFT version rates. In the case of MXM, the rate is higher than all

previous CFT version rates but slightly lower than the CFT77 (1.3) rate. This

can be due to differences in the UNICOS versus COS operating systems.

The rates for the Sandia SPEED kernels are essentially the same or

slightly higher than previous CFT version rates. Comparing CFT77 (1.3) to

CFT77 (2.0) kernel 2 had a slightly lower rate under version 2.0 which again

may be due to differences in the operating system.

The Whetstone rate is essentially the same as the rate for CFT77 (1.3)

under COS and higher than all previous CFT rates under COS.

Next to note are the Argonne Programs. The LINPACK rate is slightly

higher than all previous CFT version rates. It's not as high as the CFT77

(1.3) rate under COSI.15 but again this can be due to differences in

instruction sequence, scheduling, etc. between UNICOS4.0 and COSI.15. Also

remember that LINPACK is not well suited to show the kind of performance a

vector machine can give. It uses the BLAS package, and we ran the code as is

without inlining subroutines. Note the rates for the better LU decomposition

which uses matrix-vector techniques and is better suited to make use of

vectorizaton capabilities. The rates are improved over rates from previous

CFT versions and are essentially the same as rates obtained from CFT77 (1.3)

under COS1.15. The Vector Loops program shows a few changes. Two of the

loops which did not vectorize under CFT now vectorize under CFT77 (2.0). One

of them is loop 4 which is the following:

T = 0.

DO 40, I = i, N04

S = V99A(I)*V99B(I)

V04A(I) = S+T

T = S

40 CONTINUE

This loop is identified as a loop with an ambiguous scalar temporary in the

Argonne program. In the CRAY CFT Optimization Guide SG 0115, 1/88, this

specific loop is exemplified as one which will not vectorize because the

scalar temporary T is not defined in the loop before it is used on the right

hand side of an equal sign. The Optimization Guide shows a modified version

which will vectorize under CFT. With CFT77 the above loop now vectorizes

without modification. (However, we found a slight bug in that if a write

statement to write out V04A is inserted before the do, CFT77 then refuses to

vectorize it for with the explanation that values carried around the loop are

not incremented in a regular fashion.) The other loop which now vectorizes is

loop I0, namely



T=I.
DOi00, I = i, N10

IF (V99C(I).GE.T) THEN

X = V99A(I)*V99B(I)+3.1

Y = V99A(I)+V99B(I)*2.9

VIOA(I) = SQRT(X**2*Y)

ENDIF

i00 CONTINUE

which is defined as a loop with independent conditional. A more interesting

observation is that loop 2 which vectorized under CFT does not under eFT77.

Loop 2 is the following

2O

21

IF (ABS(V02B(2).GT.MAXUM) OP02 = .NOT.0P02

IF (OP02.EQV.ADD) THEN

DO 20, I=I,N02-1

V02A(I) = V99A(I)

V02B(I) = V02B(I)+V02A(I+I)

CONTINUE

ELSE

DO 21, I=I,N02-1

V02A(I) = V99A(I)

V02B(I) = V02B(I)-V02A(I+I)

CONTINUE

ENDIF

This loop is defined as a dependency needing a temporary in the Argonne

program. In the CRAY CFT optimization guide, a similar loop is defined as an

SPI conflict. What this means is that the array V02A has two appearances, a

key definition and another appearance in a subsequent area with an index

incremented by i. The conflict can be eliminated by changing the order of the

assignment statements and enabling vectorization. Apparently CFT did this

automatically but CFT77 does not.

Last to note are some of the significant differences in the 24 kernels of

the Livermore Loops. In particular, there is roughly a doubling of the rates

for loops 5, ii, and 19 compared to rates for previous CFT versions. Since

these involve recursion, this exemplifies a better handling of certain types

of nonvectorizable recursive loops. Loop 3 had a slightly higher rate than

previous CFT rates but a slightly lower rate than the CFT7? (1.3) rate. We

are unsure if this is due to operating system or compiler differences. Loop

18 shows an improved rate over CFT and CFT77 (1.3) rates, which may be due to

the elimination of conditional vectorization. Most significant is the drop in

the rate for loop i0. Some detailed investigation had to be done to determine

why this happened, and an explanation will be given under the discussion of

performance for UNICOS 5.0 and CFT77 (3.1) where the rate dropped even lower.

The next set of performance figures shows the MFLOP rates for the same

benchmark programs as upgrades were made to UNICOS and CFT77. The next to the

last column shows rates after a hardware upgrade when the CRAY X-MP 24 model

128 (2 cpu(s) and 4M words of memory) was replaced by a CRAY X-MP 28 model 426

(2 cpu(s) and 8M words of memory). The CPU clock cycle went from 9.5 to

8.5 ns and the chip technology changed from ECL base memory to CMOS base

memory. We also included in the last column performance figures for the Y-MP.



X-MPSWAP Y-MP

Program I UNICOS4.0CFT77(2.0)

NASKernels

UNICOSS.0
CFT77(3.1)

UNICOS5.1.8

CFT77

Ver 3.1.2.8

UNICOS5.1.10

CFT77

Ver 3.1.2.8

IUNICO5.1.10

CFT77

Ver 3.1.2.8

MXM

CFFT2D

CHOLSKY

BTRIX

GMTRY

EMIT

VPENTA

TOTAL

Sandia SPEED

173

55

58

94

74

89

41

71

182

55

58

99

76

90

41

72

182

55

59

i00

78

93

40

72

2O2

36

63

103

86

I01

23

57

284

73

89

145

116

135

51

100
i

i

Kernel 1

2

3

4

5

TOTAL

33

71

51

13

8

19

34

67

54

13

8

19

34

69

56

13

8

19

37

76

58

13

9

20

48

103

79

17

i0

26

WHETSTONE

1 meg

instr(s) 31 32 32 32 42

10



THEARGONNEPROGRAMS
X-MPSWAP Y-MP

LINPACK

I UNICOS4.0 I UNICOSS.0CFT77(2.0) CFT77(3.1)

UNICOSS.I.8

CFT77

Ver 3.1.2.8

UNICOSS.I.10

CFT77

Ver 3.1.2.8

UNIC05.1.10

CFT77

Ver 3.1.2.8

I 0RD i00
28 33 29 34 46

Better LU decomposition ORD i00

UD 1

2

4

8

16

55

63

65

63

62

59

68

71

71

68

59

68

71

7O

69

62

72

76

75

72

81

93

97

95

92

Better LU decomposition ORD 300

UD 1

2

4

8

16

99

119

123

121

120

104

125

129

131

128

104

125

129

131

129

108

133

141

142

140

148

180

189

187

183

UD - Unrolled depth

ii



Livermore Loops

I Kernel [ UNICOS4.0 I UNICOS5.0CFT77(2.0) CFT77(3.1)

UNICOS5.1.8[UNICOSS.I.10

CFT77 I CFT77

Ver 3.1.2.8 I Ver 3.1.2.8

UNIC05.1.10

CFT77

Ver 3.1.2.8

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

163

45

143

62

14

15

187

147

155

41

12

83

6

14

6

7

ii

128

15

13

62

68

13

3

164

46

136

62

14

16

188

148

154

30

14

89

5

19

5

7

12

129

15

13

61

70

14

3

165

50

156

62

14

16

179

144

158

73

14

82

5

19

5

7

12

131

15

13

67

68

14

3

183

54

173

62

7

13

2O8

153

175

78

8

97

5

17

5

6

12

144

15

14

71

76

14

3

259

69

236

91

19

22

294

221

243

iii

2O

141

7

27

7

8

16

204

20

18

9O

102

2O

4

12



DISCUSSIONOFCONFIGURATIONCHANGES

(April 1989 to Present)

CFT77(2.0) under UNICOS4.0 to CFT77(3.1) under UNICOS5.0

For the most part, there is across the board improvement in the rates for
CFT77(3.1) and UNICOS5.0 over the rates for CFT77 (2.0) and UNICOS 4.0.

Each performance figure for the NAS kernels remained the same or slightly

increased. Only kernel 2 in the Sandia SPEED program showed a slightly

decreased mflop rate. The Whetstone rate remained the same. The LINPACK rate

improved, as well as each rate for the better LU decomposition. All but two

of the rates for the Livermore Loops remained the same or slightly increased.

Kernel 3 of the Livermore Loops, which is a vectorized loop that does an inner

product slightly decreased. The most significant performance figure is the

rate for Kernel i0 of the Livermore Loops which is a little less than half of

what it was for CFT77 (1.3) and previous CFT versions.

Since we could not go back and reconfigure the machine to the UNICOS 4.0

or 5.0 and CFT77 (2.0) or (1.3) configuration, and since compiler listings

would not tell much, we had to spend some time investigating why the rate for

kernel i0 of the Livermore Loops decreased about half. Kernel i0 is the

following

DO i0 L = I,LP

DO i0 i = l,np

AR = CX(5,i)

BR = AR - PX(5,i)

PX(5,i) = AR

CR = BR - PX(6,i)

PX(6,i) = BR

AR = CR - PX(7,i)

PX(7,i) = CR

BR = AR - PX(8,i)

PX(8,i) = AR

CR = BR - PX(9,i)

PX(9,i) = BR

AR = CR - PX(10,i)

PX(10,i)= CR

BR = AR - PX(II,i)

PX(II,i)= AR

CR = BR - PX(12,i)

PX(12,i)= BR

PX(14,i)= CR - PX(13,i)

PX(13,i)= CR

i0 CONTINUE

This loop has no trouble vectorizing. There are three scalar temporaries, AR,

BR, and CR present and the increment limit np is i01. Arrays CX and PX are

dimensioned CX(25,101) and PX(25,101) and hence there are no bank conflicts.

We discussed this kernel with Jim Kohn who is in the FORTRAN Quality group at

CRAY in Mendota Heights. His group has been using the 24 kernel Livermore

Loops program to benchmark their compiler upgrades. According to his data

they did not observe the performance degradation in this loop with any

13



previous UNICOS and CFT77 configurations. However, he observed the

characteristic that there is a significant amount of alternate loading and

storing being done simultaneously, whereas most vectorized loops are dominated

by loads. Possibly, bidirectional memory, which allows loading and storing to

be done simultaneously, may have been disabled. Several tests were conducted,

on our present system configuration of CFT77 (3.1.2.8) under UNICOS 5.1.10

with the CRAY X-MP 28 model 426 to see if we could produce a MFLOP decrease of

about 50 percent in the above kernel. First we changed the target

configuration and compiled with nobdm (no bidirectional memory). However,

this produced incorrect answers for the reason that CFT77 compiled without the

safety features to prevent memory overlaps while the hardware still ran with

bidirectional memory enabled. Next, we altered the cpu with /etc/cpu

01 bdmoff followed by the run of the object code. This produced a decrease of

about 40 to 50 percent in the MFLOP rate whether we complied with or without

the safety features. Even in dedicated mode the rate for kernel i0 dropped

significantly without significantly altering the rates for the other kernels.

Thus, this may have been the problem.

CFT77 (3.1) under UNICOS 5.0 to CFT77 (3.1.2.8) under UNICOS 5.1.8

Most of the performance figures remained stable with the change to CFT77

version 3.1.2.8 and UNICOS 5.1.8. The rates for the NAS kernels, Sandia

SPEED, and Whetstone programs either remained the same or slightly increased.

In the Argonne programs, the LINPACK rate went down slightly but the rates for

the better LU decomposition remained the same. Note that in the Livermore

Loops program, the rate for kernel I0 is back up to slightly higher than the

rate under CFT77 version 1.3 and any previous CFT version. Except for the

rates for kernels 7, 8, and 12, which decreased slightly, all rates for other

kernels remained the same or slightly increased.

CFT77 (3.1.2.8) under UNICOS 5.1.10 on the upgraded CRAY X-MP

This was our first look at the performance figures under a configuration

with different hardware, when the CRAY X-MP 24, model 128 was replaced with a

CRAY X-MP 28, model 426. Differences include a faster CPU (8.Sns clock cycle

as opposed to 9.5ns clock cycle), memory size twice as large, but a bank

memory fetch that takes twice as long. The faster CPU had a positive effect

on certain performance figures while the memory fetch time had a negative
effect on some rates.

Note first the NAS kernels. There is about an 8 to i0 percent increase

in kernels MXM, GMTRY, and EMIT, but almost a 40 percent decrease in CFFT2D

and between a 40 and 50 percent decrease in VPENTA. The problem with CFFT2D

and VPENTA, which was not noted until now is that they have a worse case bank

conflict situation. The X-MP 28 has 32 banks. Kernel CFFT2D, which does a

complex two-dimensional fast Fourier transform, has an array X dimensioned

X(128,256). Kernel VPENTA, which simultaneously inverts three matrix

pentadiagonals, has six two-dimensional arrays dimensioned (128,128) and two

three-dimensional arrays dimensioned (128,128,3). Since the second index is

changing the fastest in the vectorized loops and the leading dimension 128 is

a multiple of 32, the number of banks, bank conflicts exist and they seriously

degrade the performance of the kernels. They existed on the X-MP 24 also when

the rates were 55 MFLOPS and 40 MFLOPS respectively for CFFT2D and VPENTA.

However, the degradation is worsened on the X-MP 28 since the bank memory
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fetch time is twice as long, thus accounting for the 40 to 50 percent drop.

This is easily corrected by changing the leading dimension of the arrays from

128 to 129. We ran the NAS kernels in non-dedicated mode with this leading

dimension change and got a M_FLOP rate of 102 for CFFT2D and a MFLOP rate of

130 for VPENTA.

There was essentially little change in the Sandia SPEED and Whetstone

programs. Kernel 2 in Sandia SPEED had the most improvement, about 8 percent.

In the Argonne programs, LINPACK shows a rate near what is was under

CFT77 (1.3) and COS 1.15BF2. The LU decomposition rates have all increased

roughly 5 percent or less.

Increases and decreases are evident in the Livermore Loops. Twelve of

the kernels show rate increases, the most significant ones being Kernels i,

18, and 22 which had increases of about i0 percent. The most significant

decreases are in kernels 5 and ii, which dropped about 50 percent. Each of

these has a worst case recursion situation. Kernel 6 also dropped down but

not as much as kernels 5 and ii. It also has a recursion situation.

Recursion itself can cause bank conflicts and since the new hardware has

memory fetch taking twice as long than the previous hardware, this accounts

for the decrease of about 50 percent in the kernels 5 and ii. We verified

this with the following analysis. Consider kernel 5,

5

DO 5 L = i, LP

DO 5 I=2, N

X(I) = Z(I) * (Y(I) - X(I-I))

This loop does not vectorized. As X(I) is being stored, the loop index is

incremented by 1 and the same value must then be retrieved (from the same

bank) to be used on the right hand side in the next pass. We conducted a test

on the following program with CFT77 (3.1.2.8) under UNICOS 5.1.10,

T1 = SECOND()

DO 5 I =2, N

5 X(I) = Z(I) * (Y(I) - X(I-l))

T2 = SECOND()

TIME1 -- T2 - T1

T1 = SEC0ND()

CDIR$ novector

DO I0 I = 2, N

I0 X(I) = Z(I) * (Y(I) - W(I-I))

T2 = SECOND()

TIME2 = T2 - T1

A value of i001 was used for N. The first loop is the same as kernel 5. The

second loop is identical except with the second appearance of array X replaced

with array W thus removing the recursion. The novector directive was inserted

because the second loop vectorizes and runs about 13 times faster than the

first loop. However, with the novector directive, neither of the loops

vectorizes but the second one runs between 1.5 and 2.0 times as fast (no bank

conflicts). We even went a bit further and tested the loop
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and

DO15 I=3, N
15 X(I) = Z(I) * (Y(I) - X(I-2))

DO20 I=4, N
20 X(1) = Z(1) * (Y(1) - X(l-3))

to see if we could eliminate the effect of bank conflict in recursion. The DO
20 loop seemedto totally eliminate the effect as it ran almost twice as fast
as the DO5 loop. Note that with the index I-3 in the second appearance of X,
the samebank will be accessed on ever third execution of the loop instead of
every other execution with index I-2 or every execution with index I-l.

Y-MPwith CFT77version 3.1.2.8 under UNICOS 5.1.10

For comparison purposes, we thought it interesting to show the

performance rates for the Y-MP model 8/6128 (6 processors and 128 M words of

memory). As expected, there is across the board improvement in the rates and

particularly significant improvement in those kernels which vectorize well.

The Y-MP has a 6 ns CPU clock as opposed to an 8.5 ns CPU clock on the X-MP.

In some kernels there is not much difference but that is because they are not

able to demonstrate what this kind of architecture can do. For example,

kernel 16 in the Livermore Loops is a Monte Carlo Search loop which has a lot

of arithmetic IF(s), and kernel 24 is a small loop that searches for the

minimum in an array and is dominated by logical testing.

DISCUSSION OF THE LINPACK RATES

Some remarks concerning the LINPACK rates should be made, especially in

relation to the figures reported in the report "Performance of Various

Computers Using Standard Linear Equations Software" by Jack Dongarra dated

October I, 1990. In that report, the MFLOPS figure for LINPACK, n = i00, on a

CRAY X-MP/416 (one processor, 8.5 ns clock) is 70. Furthermore, the figure

for a CRAY X-MP/416 (two processors, 8.5 ns clock) is 115. For a Y-MP/832

(6 ns clock) with i, 2, and 4 processors the rates are respectively 90, 144,

and 226.

The figures shown in this report are not nearly that high. According to

ground rules for running the benchmark, no changes are to be made to the

FORTRAN source, not even changes in the comments. Therefore, we made no

attempt to inline subroutines, or to use automatic microtasking features of

the compiler.

The figures reported in [2], were obtained by inlining four of the

subroutines in the program. The subroutines are SAXPY, SDOT, SSCAL, and

ISAMAX, which are in turn called by SGEFA and SGESL. Also, the source was

compiled under CF77 (version 4.0) with the option -Zp, which causes

autotasking and microtasking to be done. In case of more than 1 CPU, wall

clock time was used instead of CPU time to calculate MFLOPS.

By inlining the four subroutines identified above and using the -Zp

option for more than one CPU, we were able to obtain the following rates. For

1 and 2 CPUs on the X-MP, 67 MFLOPS and 105 MFLOPS were obtained respectively.
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For i, 2, and 4 processors on the Y-MP, 88, 141 and 218 MFLOPS were obtained

respectively.

FINAL DISPLAY OF FIGURES

At the end of this writing, our X-MP and Y-MP system configurations were

just upgraded to UNICOS 6.0 and CFT77 version 4.0.3. The figures that follow

show the rates for that figuration, obtained early July, 1991.
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Program

X-MP Y-MP

UNICOS 6.0 UNICOS 6.0

CFT77(4.0.3) CFT77 (4.0.3)

NAS Kernels

MXM

CFFT2D

CHOLSKY

BTRIX

GMTRY

EMIT

VPENTA

TOTAL

193

36

63

102

84

129

25

58

272

73

88

142

112

175

55

103

Sandia SPEED

kernel 1

2

3

4

5

TOTAL

36

76

57

6O

g

27

48

102

78

83

ii

35

WHETSTONE

i meg

instr(s) 3O 4O
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THE ARGONNE PROGRAMS

X-MP Y-MP

UNICOS 6.0 I UNICOS 6.0
i

.0. 3)
CFT77(4.0.3)ICFT77(4

LINPACK

I ORD 100 34 [
37

Better LU decomposition ORD i00

UD 1

2

4

8

16

62

71

76

73

69

79

91

95

92

88

Better LU decomposition ORD 300

UD 1

2

4

8

16

108

132

140

139

133

145

178

184

182

175

UD - Unrolled depth
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Livermore Loops

X-MP Y-MP

Kernel UNICOS 6.0 I UNICOS 6.0

CFT77(4.0.3)ICFT77(4.0 3)

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

181

53

173

60

13

13

207

161

175

77

13

97

5

17

21

6

12

144

14

14

68

76

14

3

258

65

236

9O

19

21

295

230

242

109

20

142

7

27

3O

8

16

203

2O

18

84

i00

2O

4

DISCUSSION OF THE FINAL FIGURES

According to CRAY release notes, many problems that existed with CFT77

were fixed with CFT77 version 4. Also, enhancements included the ability to

vectorize more types of loops. This is reflected in the rates seen for kernel

4 in the Sandia SPEED program and in loop 15 in the Livermore Loops which

showed the most significant changes. Kernel 4 in the Sandia SPEED program

went from 13 to 60 on the X-MP and from 17 to 85 on the Y-MP. It has an inner

loop with conditional branching, which did not vectorize under previous

versions of CFT77 but does vectorize under CFT77 (4.0.5). Loop 15 in the

Livermore loops also has an inner loop with conditional branching which now

vectorizes under CFT77 (4.0.3). Its rates increased by a factor of four.

In the NAS kernels, the rate for MXM went down slightly, but the rate for

EMIT went up.

Aside from the significant increase in the rate for kernel 4 explained

above, the rates for the Sandia SPEED kernels essentially remained the same.
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Whetstone rates did not improve.

For the Argonne programs, the LINPACKrate on the Y-MPwent down
slightly, and the rates for the larger unrolled depths in the better LU
decomposition went down slightly. Wedid not investigate specific reasons for
this.

The vector loop program did not produce any change from the results

obtained with CFT77 version 2.0.

In the Livermore loops, note the rates for kernels 5 and ii, which have

worse case recursions and had an effect on the X-MP with the hardware upgrade.

These rates have improved to what they were before the hardware change. Thus

the compiler has improved its ability to handle certain types of recursion.

CONCLUSION

Overall, the figures show that MFLOP rates have significantly increased

through system configuration upgrades. Rates can remain unchanged and they

can go down as well as up. Although reasons for most changes in the rates can

be explained by compiler changes or upgrades, performance changes can also be

caused by system and hardware changes.
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